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ABSTRACT

The purpose of this report is to present the results of a study sup-

ported by NASA Grant NGR 39-004-051. The primary goal of this study was

to perform a systematic search of the open literature with the purpose of

identifying the causes, effects, and characterization (modelling and so-

lution techniques) of transient hydraulics phenomena.



NO(IENCLATURE

b = conduit wall thickness

C = propagation velocity (defined on page 2 )

C1 = (See page 4 )

D ='diameter of conduit

E = modulus of elasticity of conduit material

F,G = frictional loss coefficients

g = gravitational acceleration

K = bulk modulus of elasticity of fluid

p = pressure

r = radial coordinate

t = time

u = axial velocity

v = radial velocity

x = axial coordinate

y = specific weight

o = mean absolute viscosity

v = poisson's ratio for conduit material

ii



I INTRODUCTION

This report presents the results of a study which included the

systematic search of the open literature with the purpose of identify-

ing the causes, effects, and characterization (modelling and solution

techniques) of transient hydraulics phenomena.

The first section of this report includes the governing partial dif-

ferential equations which were found to be used in the majority of the pa-

pers and some basic definitions which we are utilizing in this study. The

second section in this report includes the detail survey sheets in which

the type of hydraulics problem, the cause, the modelling, the solution tech-

nioue utilized, and the existence of experimental verification (if any) are

presented for each paper. The third section lists the references used in

our study; the fourth, the list of source documents, and the final section

contains a discussion of our study.
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II DEFINITIONS AND T FORY

This section contains the basic definitions of certain engineering

terms which are applicable to the study of hydraulic transients. In addi-

tion, the basic governing differential equations utilized in the majority

of the papers we reviewed are listed for easy reference.

A. J)efinitions

Periodic Flow -- synonomous with steady oscillatory flow

Pulsatile Flow -- synonomous with steady oscillatory flow

Steady-Oscillatory Flow -- flow conditions identically repeated in

every fixed time interval called the

period of oscillation

Steady Flow - no change in conditions with time at a

point

Transient Flow '- unsteadY flow condition when flow changes

from one steady-state condition to another

steady-state condition

Unsteady Flow -- conditions at a point change with time

Waterhammer -- transient flow in pipelines; rapid decelera-

tion of flow caused by closure of flow pass-

age

2



B. Theory

The governing equations utilized in the majority of the publications

we reviewed can be placed in three categories depending on the degree of

approximation used in the model.

1. Simple Model with no Losses

au= - p a Continuity

(1)

u- p  
Momentum

;x at

2. Linear or Quadratic Friction Model

aU -1 Continuity
Wx -P 2at

(2)

S a- + R(u) Momentumax at

where R(u) = Fu for linear friction model; generally
used for laminar flow

Gu2 for quadratic friction model; generally
used for turbulent flow

3. Viscous Model

au+ av "--- -i Continuityax ar r pC t Continuity

(3)

D - p  +  r -- 1 a1 Momentum
ax at r ar

In equations (1), (2), and (3) the expression for the propagation
velocity C, is

C2 =
. + c (4)

g K Eb
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where C1 is a parameter which incorporates the flexibility and support of

the conduit or pipe. For example, if the flexibility of the pipe is

deemed unimportant C1  0. Other expressions for C1 are, for example,

C1 = 1 - v2  for the case where the conduit is

anchored against longitudinal movement

C1 
=  - V/2  for the case where conduit contains expan-

sion joints

The question of which of these theories to use for a particular pro-

blem is of much relevance. A recent paper by Goodson and Leonard (GO:72.0)

presents a review of some work in fluid line transients and develops a

criterion for choosing the particular system of governing equations neces-

sary for a particular problem.

The solution techniques utilized in the majority of the papers included

exact integration, graphical, method of characteristics, finite differences

and transforms. A recent paper by Streeter (ST:72.0) presents a review of

the method of characteristics and center implicit finite difference tech-

niques as applied to transient flow problems.
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III SURVEY

This section includes our comments on each of the papers we reviewed.

We have four categories of papers; transient, components, periodic, and

cavitation. For each paper, we state the cause of the particular phenomena

being studied (if discussed), the mathematical modelling and solution tech-

niques utilized, existence of experimental verification (if perform.ed), and

any special comments we believe to be relevant.

5



ARTICLE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS
REFERENCE EVIDENCE
NUMBER ASSUMPTIONS SOLUTION

TECHNIQUE

LA:98.0 Transient Waves in liquid- 1 Dim. membrane Dispersion with long No Extension of Korteweg
(R24) tube. shell; 2-Dim., non- wavelengths. work in Annalen der

viscous fluid. Physik und Chemie, Vol.

9, Folge, Band 5, 1878,
pp 525-542. Lamb's work
one of the first to uti-
lize Dynamic Elasticity
and fluids.

JO:04.0 " Water Hammer 1 Dim. theory for Classical Integra- Yes Applied Lamb's and
wave speed and pres- tion. Korteweg's work to pro-
sure increase. blem of waterhammer.

Discusses wave speeds,
pressure increase, ef-
fects of closure time,
relief chambers, and use

of waterhammer to detect
holes and air pockets it
pipelines.

AL:03.0 " Water Hammer Classical 1 Dim. Graphical Based Applied work to design
Theory. on wave solution. of water works' .systems.

WA:33.0 " Water Hammer Classical 1 Dim. Most amenable tech- Yes Symposium on water ham-
nique was method of mer sponsored by ASME.
characteristics with
graphical solution.

KE:29.0 " Value closure Classical 1-Dim. Several techniques Some Rate of gate travel
Theory. shown to be important.

AN:37.0 " " Classical 1-Dim. Graphical No Method based on work
Theory. of Allievi.

LE:37.0 " " 1-Dim. with friction Yes Mainly concerned with
Reasonable resurge period.
agreement.

BE:61.0 " " 1-Dim. with friction Graphical Summaries of graphical
work.



ARTICLE
1EFERENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS
NUNMER EVIDENCE

ASSUMPTIONS SOLUTION
TECINIQUE

N:37.0 transient " 1-Dim. Theory with Graphical Techniqugs No Design of self acting

friction. of Bergeron and shut off valves to
Angus utilized. limit water hammer

effects.

SC:37.0 " Pump shutdown 1-Dim. Theory Graphical techniques Some Applied to pump shut-
down including check
valves.

WO:37.0 " Water Hammer 1-Dim. Theory with Neaviside No Paper demonstrates ap-
linear friction. operational plicability of opera-

tional calculus.

AN:39.0 " " 1-Dim. Theory with Graphical work of No Compound and branched
friction at discrete Allievi. Pipes..
points.

DA:39.0 1 " 1-Dim. Theory Review of graphical Conduits, compound,.
work of Allievi, branched, pump, and air
Bergeron, etc. chambers.

RI:39.0 " " 1-Dim. Theory with LaPlace-Mellin No Improvement on Wood's
linear friction. transform. (WO:37.0) work.

SQ: 49.0 " Pump variations Review and design papey

LU:50.0 " Oil line surges 1-Dim with friction Transform No

BI:51.0 Valve closure 1-Dim with friction Transform No Similar to work of Wooc
(linear). (WO:37.0) and Rich (RIn

PA:53.0 " Water Hammer 1-Dim, with and Analog and digital No Apparently first paper
without friction. computers. utilizing computers

for water hammer.

1MO:55.0 " " No Review of phenomena,

1-Dim. theories, and
surge relief mechanisms

C1:56.0 " Hydraulic control 1-Dim. with friction Transforms No



ARTICLE
REFERENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL CO1MMMNTS
NUMf3ER EVIDENCE

ASSUMPTIONS SOLUTION
TECHNIQUE

NI:66.0 transient Same as SK:60.0 with
some thick shell No
terms included.

ST:67.0 1-Dim. with friction See comments Distribution piping s
No tems. Application of

previous Streeter wor
to complex systems.

FR:68.0 " " 2-Dim. inviscid, Finite Hankel trans- No Additional stresses
compressible fluid; form and method of shown to develop' in
shell theory with characteristics. shell due to Water.
transverses shear Hammer.
and rotary inertia.

KA:68.0 " IN RUSSIAN.

CH:68.0 " -Dim. theory Fourier series using Similar to GO:63.0 wo:
analog. except for truncation

technique (and series
00

WO469.0 " Water Hammer with 1-Dim. theory with Algebra Good comparison .Line motion appears t,
line motion, lumped mass-spring be important.

damper to simulate
line iotion.

BR:62.0 " 2-Dim. fluid, rigid LaPlace Trans-, No Operators developed.
walls: laminar flow. form

GO:63.0 " Hydraulic line 1-Dim. with friction Transform with quo- Good over freq.
dynamics. tient of infinite range appropriate

products. to assumptions.

4AN:66.0 Hydraulic line 1-Dim. with and LaPlace More closed form
dynamics. without friction. transform. solutions by Martin.

ST:68.0 Apply Lattice of Method of character- No See ST:67.0
1-Dim. pipes to 2D istics with computer
3-D Lattice



ARTICLE
TFLRENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COFIENTS
NUMBER EVIDENCE

ASSUMIPTIONS SOLUTION
TECHNIQUE

SK:56.0 transient Water Hammer 2-Dim. inviscid fluie Laplace and Fourier Confirmation of See conclusions of
and Flugge shell Transforms. some theory. this paper for dis-
equations. cussion of wavelength

effects, etc.

RO:60.O " Valve closure 1-Dim. with linear Separation of Reasonable Viscous fluid
linear friction. variables.and series comparisons, applications.

solution.

WA:60.0 . Water'Hammer 1-Dim. Navier Stokes Separation of No Viscous disoersion.
with longitudinal variables. Results show viscos-
viscosity. ity effects rise time

and pulse shape; not
magnitude.,

HA:63.0 . "- -Dim. Wave velocities for
different pipe pro-
perties and supports.

LI:63.0 Nuclear blast wave Classical 1-Dim. Superposition of Yes
waves for various

, _support conditions.

ST:62.0 Water Hammer 1-Dim. with non- Method of charac- Good agreement Solves many boundary
linear friction, teristics with value problems. Claim

computer. of originality dis-
putes by Paynter. See
Refs. in this paper.

ST:63.0 " Valve stroking 1-Dim. with non- Method of charac- Application of work in
design. linear friction. teristics with , ST:62.0 for valve

computer. closure specification
to limit effect of
water hammer.

'CO:65.0 " Water Hammer 1 Dim. with non- Method of charac- Good agreement Reflections of primary
linear friction with teristics. See concern.
minor losses lumped ST:62.0 and ST:63.0
at boundary

KA:65.0 " 1-Dim. Wave superposition No Applied to pipe
junctions.



ARTICLE
REFERINCE CLASSIFICATION CAUSES ' MODELLING EXPERIMENTAL CMENTS

NM3BER EVIDENCE
ASSUMPTIONS SOLUTION

TECHNIQUE

DS:62.0 transient Hydraulic line 2-Dim. with friction LaPlace Transform' Reasonable agree- Small diameter pipe
dynamics laminar, compressible ment. applications.

JA:49.0 " Sound waves in 2-Dim. non-viscous Dispersion (harmonic Good agreement For higher frequency
liquid-filled analysis problems. Wave length
cylinders. order of pipe diar

meter. Many boundary
conditions.

TH:51.0 " " 2-Dim. viscous, mem- Dispersion No Adds to work of LA:98
brane shell theory. (harinonic) analysis .0 and JA:49.0.

BI:52.0 " " 2-Dim. fluid; 3-Dim. Dispersion No For wavelength t6 dia
elasticity. (harmonic) analysis meter ratio >5, Water

Hammer wave velocitie
are applicable.

FA:52.0 " Love Theory Dispersion Yes

(harmonic) analysis

LI:56.0 " " 2-Dim. inviscid Dispersion Major difference be-
fluid; shell with (Harmonic) analysis tween this paper and
transverse shear and TH:51.0 is improved
rotary inertia in- shell theory.
cluded.

SC:59.0 " Pneumatic line 1-Dim., linear fric- Reasonable agree- See discussion and
dynamics. tion laminar, no ment. Ref. 6.

pipe effect on wave
velocity.

IKE:56.0 " 1-Dim. Yes Mainly experimental
demonstration.
Concrete pipe.



ARTICLE
REFERTNCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL (IMINTS

NUMBER EVIDENCE
ASSUMPTIONS SOLUTION

TEaLNIQUE

CO:72.0 Transient For hydraulic 1-Dim. with non- Method of
mining, linear friction characteristics.

GO:72.0 " Fluid line trans- Good Reference list,*
ient survey. Lists criteria f6r

choosing approprihte
models.
Weak on description of
other than operator
tvoe solutions.

JO:72.0 " Hydraulic line 1-Dim. with boundary Method of charac- Comparison with Method of character-
dynamics. motion prescribed. istics and closed both types of istics gives best

form.solutions. solutions. solution.

ST:72.0 " " No Review of method of
characteristics and
center implicit finite
difference techniques,
discussion of stabil-
ity, accuracy, and
numerous boundary
conditions.

'YO:72.0 Natural gas line One-Dim. with non- Method of No Discussion of error
dynamics. linear friction. characteristics. and stability criteria

(method of character-
istics).

FU:72.0 Orifice and short 1-Dim., inviscid Closed form and" Good agreement
line transients. compressible. stepwise plane wave

solutions



ARTICLE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS
REFERENCE EVIDENCE
NUMBER

ASSUMPTIONS SOLUTION
TECHNIQUE

MA:73.0 Transient General Good review of recent
work in Europe. Total
of 218 papers cited
(mainly European).

ME:73.0 " General Viscous, compress- Operational calculus, One of few papers ad-
ible turbulent, 1- linearization yield dressing turbulent
Dim., constant fric- transfer matrix. flow. Follows BR:69.0.
tion, non-linear.

SH:73.0 " General 1-Dim. Model Demonstrates: Basically experimental
1. dependence of paper.
friction on freq.
2. shear stress at
wall function of R
and freq.
3. in general,
friction factor de-
termined by steady
flow not adequate
for transient ana-
lysis,
4. inertia effects
important.

BR:69.0 " 2-Dim. Model, tur- Semiempirical with Yes Read conclusions
bulent, breaks into much transform.
3-frequency regimes.

JA:72.0 " Water Hammer 2-Dim. Navier Stokes Separation of vari- No Theory predicts growtt
compressible. ables and transform. of boundary layer botl

in time and space.

MO:73.0 Transient Blow down or flow 1-Dim., non-linear Method of character- Comparison with Major emphasis in
stoppage. friction. istics. existing exper- paper is to predict

iments. pipe reaction forces.



ARTICLE
1EFERENCE CLASSIFICATIONI CAUSES MODELLING EXPERIMENTAL (D MNTS
NURMER EVIDENCE

ASSUMPTIONS SOLUTION
TEGINIQUE

BI:73.0 Transient Describes technique fo3
correcting data obtain-
ed from transient mea-
surements.

TH:69.0 " Essentially identical
to LI:56.0

BR:69.0 " General . Laminar, 1-Dim., Method of No Extension of Zielke's
compressible. characteristics. work (ZI:68.0). Exten-

sion of method of
characteristics to in-
clude "Quasi-hyperbo-
lic" equations.

MA:68.0 " Pneumatic 1-Dim., non-viscous Method of No Duplicates much of the
transients. characteristics. work of Benson, et al

(Int. Jnl. of Mech.
Sci., Vol. 6, No. 1,
1964).

HO:67.0 General Theory of BR:62.0 LaPlace Transform Exp. verifies va-
and DS:64.0; in- lidity of 1-Dim.
cludes viscous model with freq.
shear. dependent shear.

Good correlation
ZI:67.0 " 1-Dim. with Method of with theory. Shows Extension of work in

freq. dependency
friction, characteristics. of riction pre- HO:67.0.

dicts distortion
of pulses in pipes

GE:67.0 " " Navier Stokes Potential (scalar VerTfied modes of Notes the efftect of
equations. and vector) decom- propagation elastic walls on snat-

position; Laplace tial propagation o?
trlnsform and phase modes.
vc oci ty.



ARTICLE
'EFER.CE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL .COMMENTS
NUMBER EVIDENCE

ASSUMPTIONS SOLUTION
TECHNIQUE

KR:66.0 transient General Classical 1-Dim. Method of No Not a very good liter-
water hammer equa- characteristics. ature search in this
tion including paper; most work al-
friction. ready done.

DO:66.1 -" " Classical 1-Dim. Wave plan-similar. Yes Incorporates a distri-
Water Hammer eqtn. concept to method buted parameter
including friction, of characteristics. method.

DO:66.0 " " Same as DO;66.1

DS:64.0 General 2-Dim; Navier-StokeE Laplace Transform; Good comparison be-
for small .diameter produces transfer tween theory and
tubes. matrix experiment.

RE:60.0 1-Dim., non-viscous, Phase velocity Yes 'Dynamic response of
non-linear eqtns. . _ long hydraulic lines.

GO:64.0 " 1-Dim. Water Hammer Laplace transform Good agreement
Theory. and infinite pro-: with theory.

ducts to produce
... transfer functions.

TA:65.0 " " Theory of LI:56.0 Fourier transform No
for steady state;'
method of character-
istics for transient

*GO:62.0 1-Dim. Water Hammer Transform to pro- Good agreement
duce transfer func- with theory.
tion.

OL:62.0 " Hydraulic turbine Frequency response
gate oscillations tests on hydraulic

turbines.



ARTICLE
REFERENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL C03MlENTS
NUMBER EVIDENCE

ASSUMPTIONS SOLUTION
TECHNIQUE

LE:52.1 Components Steady-state axial Non-viscous and in- See paper Good Agreement For servo-mechanisms.
force on control compressible; 2-Dim.

valve pistons. flow; flow assumed
quasi-irro tational.

LE:52.1 " Valve instability 1-Dim. force (trans- " Good Qualitative

(RR 03) ient) balance on Agreement.
valve.

ST:53.0 " Relay servo mech- See paper " No Reasonably large re-
anism effects of ference list.
friction.

WE:56.0 " Frequency response " " No. Incorporate serme con-
of servomechanism trol (control signal
designed for opti- proportional to norma.
mum transient re- stab. signal and.'sign-
sponse. error-root-modulus-

error signal).

EZ:57.0 " Analog and digital " " No. Applications to water-
(RR 04) simulation of con- hammer; air chamber

duits, valves, and check valve in
pumps in hydraulic pumping plant; contro
and Pneumatic syste of flows and levels.

BU:59.0 " Loaded hydraulic Pressure of oil Closed form Nc Considers response of
integrating relay. supply is constant; integration. loaded hydraulic rela,

transmission of pres- to stop function, rami
sure thru oil is in- function sinusoidal,
stantaneous; no .- and general inputs.

,dilatation of hy-
draulic circuit oc-
curs due to oil pres
sure.



ARTICLE
REFERENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS
NUMBER ASSUMPTIONS SOLUTION EVIDENCE

TECHNIQUE

IS:63.0 components Self-excited oscil- fluid is incompress- Closed Form Inte- Yes
lation of hydraulic ible, laminar, flows gration
values. along surface of

spool; pressure drop
due to viscosity is
lumped.

WA:63.0 Electrohydraulic See paper See paper No Design for servo with
servomechanisms near time-optimal re-

sponses (DA:65.1).

DA:64.0 I Hydraulic servo- See paper Power series No
mechanisms with expansion.
non-linear value
flow characteris-
tics.

DA:64.1 " Hydraulic servo Effects of inertia Analog Yes
mechanism connected load compressibility
to inertial load. leakage structural

flexibility and da
damping, coulomb
friction included.

NI:64.0 I" Loaded high press- See paper Transform - Yes Components include
ure hydraulic on- valve, cylinder, ampl!
off servo. fier, relays, potentic

meter, load, oil.

DA:65.0 Servo with time op- See paper Closed form Integra- No Design (DA:65.1)
timum transient re- tion
,sponse valve.

CH:66.0 Value controlled Classical valve con- Graphical No
actuator. trolled actuator

with compressibility
of fluid included.

MA:70.0 Hydraulic servo Small perturbation Analog
with unsymmetrical theory with coulomb
oil volume condi- friction included.
tions.



CN ER DLING EXPERTIM NTFAL CJOMn "I'S -
ASSUMPTIONS SO TIN VIDENCE

TE INI QUE
AL 37.0 components Value closure. Air 1-Dim, with and with Finite differences No

chamber desi n. without friction.AN:37.0 " Valve, pump failure Classical 1-Dim., no Graphical No
Air chamber and friction; see AL:03.
value desin 0.

WO:70.O " Air chamber design Distributed parame- Wave planm r DGood correlation
meter 1-Dim,

KA:73.0 " Fluid transmission Navier Sto es per- rans orm a ionline. turbation eqtns. correlation

00:67.0 " Hydraulic control 3rd order linear No
system. . system. No

GE:67.0 "Hydraulic conduits
Good correlation Review of state-of-th

art for modelling hy-
draulic lines as re-
lated to fluid contro
systems.

NI:62.0 " Pneumatic transmis- Navier Stokes Harmonic
sion lines. No

KE:73.0 " Hydraulic actuators
design model No

BE:72.0 " Pneumatic pulse Yes
transmission. Yes Mainly exp. study to

study effect of tube
size and fittings on
pulse distortion andGO:68.0 Differential pulse---------- a attenuation.

length modulated Yes Mainly a feasibility
penumatic servo u- stablishes validity Study.
tilizing floating f this concept.

. flapper-disk
switching value.



ARTICLE
'EFEIIFZENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COiMflNTS
NUMBER A EVIDENCE

ASSIUMPTIONS SOLrTION
TECHNIQUE

TU:59.0 components Response of loaded Fluid incompressible See paper No Good literature
hydraulic servo- pressure drops occur review.
mechanism. only at piston of

actuator and control

ports of valve.,

EZ:60.0 Lumped parameter Ic No Fluid inertance, capa-
(R 16) modelling of fluid- citance, and resist-

power systems. ance are primary lump-
ed parameters.

DA:63.0 Response of hydrau- Coulomb damping, Analog solution Reasonable agree-
lic servomechanism leakage, and com- ment for risetime,
with inertial load. pressibility effects frequency and damp-

are included. ing ratio of trans-

ient oscillation.
0o



kRTICLE
;FE3 lNCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL (I)MMENTS

1UMBER EVIDENCE
ASSUMPTIONS SOLUTION

TECHNIQUE

IT:73.0 components Pipe Junctions Empirical Yes-to verify em-
pirical formulas
for loss factors.
in tees.

Finite

KE:69.0 One-way air Water column theory Difference No
chambers for
pumping plants.



ARTICLE
REFERENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS

NUMBER

ASSUMPTIONS SOLUTION
TECHNIQUE

DI:29.0 Periodic Periodic surges Line-pump resonance Mostly graphical Laboratory and in Emphasis on theory
(RR38) caused by action of viscous damping 1-D; analysis. field setups studied application to elimi-

reciprocating pumps wave speed eqtn. and by investigators and nate surge problem in
Also covers surges pressure velocity various pipe line oil pipelines.
resulting from ca- relation. companies recommends

air chambers as most
satisfactory solu-
tion to surge pro-
blems.

IB:50.0 Periodic Oscillatory press- Elementary theory Mathematical analy- Nc For instrument lines
(R32) sure variation developed and then sis often employing connecting a tube

applied to one end expanded to include Bessel's functions (with pressure varia-
of a tube. compressibility fin- (Harmonic analysis, tion) to a pressure-

ite pressure ampli- basically). sensitive element.
tudes, fluid accele-
ration, end effects
and heat transfer.

WE:66.0
(R40) Periodic Pulsating flow for Impedance method: Experiments were

power transmission lumped and distribu- made to study the
' ted parameter. effects of pulsat-

ing flow on line
dynamics and vis-
cosity effects.

BL:62.0 Periodic Oscillating up- Undamped sinusoidal Transfer functions Good agreement be- Shows that the effect
(P44) stream valve waves neglect waves lumped parameter. tween theory & ex- of line motion on

in pipe wall fluid periment on a flex- fluid wave pattern,
velocity<<sonic vel- ible line with a 900 is considerable.
ocity termination elbow.
impedance known as
function of frequ-
ency pipeline vibra-
tions described as
perfect viscous
damped spring-mass
system.



ARTICLE
REFEIENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS

NUMBER .EVIDENCE
ASSUMPTIONS SOLUTION

TECHNIQUE

WO:68.0 Periodic Sinusoidal and non- Spring-mass analogy Digital nonlinear Experimental re-

(M39) sinusoidal inputs and closed form sults in agreement
caused by varying linear analysis with predicting.

output orifice oe transfer functions
opening and by a (distributed para-
side branch piston. meter wave plan).

KA:67.0 Pe-riodic Pressure waves in Flugge's shell equa- .Harmonic ee Herrman & Mirsky's
fork, also good dis-

propellant feed tions 2-D Eqations ' -
cussion on which types

of motion for com-
of excitation will re-

fluids quire higher levels of
theory.

Ho



ARTICLE
REFERENCE CLASSIFICATION CAUSES MODELLING EXPERIMENTAL CMENTS
NUMBER EVIDENCE

ASSUMPTIONS SOLUTION
TECHNIQUE

OR:69.0 Periodic Fuel systems, bio- Navier Stokes Periodic and sepa- No
logical systems. ration of variables,

Also perturbation
solution.

HA:72.0 Periodic Pump generated Yes Measurements of re-
(vibration) pressure pulsa- actor vessel and com

tions. ponents in three loo
water reactor.

CA:69.0 Greater arteries 1-Dim., incomp. Method of Reasonable
pulsatile of cardiovascular Navier-Stokes. characteristics. correlation.

system.

SIT:69.0 (vibration) Pieumatic line 1-Dim. Harmonic No
vibrations.



ARTICLE
REFERENCE 'LASSIFICATION CAUSES MODELLING EXPERIMENTAL COMMENTS
N UMBER EVIDENCE

ASSUMPTIONS SOLUTION
TECHNIQUE

GA:58.0 Cavitation Column separation Classical 1-Dim. Closed form In- reasonable agreement
(RR 33) due to pressure Theory incl. effect of tegration qith Theory; quali-

reaching vapor pres- negative pressure sur tatively demon-
sure in line. Due surge due to column strates effect of
to valve closure separation. secondary waves.

DU:73.0 C olumn separation None None Experimental veri-
(RR 21) due to pressure fication of effects

reaching vapor pres- of flow separation
sure in line. Due - on pressure pulses
to valve closure in hydraulic system.

LI:62.0 " Column separation 1-Dim. "rigid column" Closed form Inte- No
(RR 18) due to pressure theory where liquid gration for mo-

reaching vapor pres- is assumed to be in tion of liquid
sure in line. Due compressible after column.
to valve closure, formation and before Method of chara-

closure of vapor col- teristics for
umn. Neglect of water- spreading of in-
hammer effect. The a- terface.
bove for motion of
liquid column. For
spreading of interfacE
face. - 1-Dim. eqtns
with friction neglect
ed.

CA:64.0 " Cavitating Pumps Classical 1-Dim. Graphical reasonable agree- Reasonable literature
(R 45) Theory. (characteristics ment with some ana- review of cavitation

lytical results. problem. Paper concernec
with pump "blow-up" in
phosphate slurry lines.

LI:64.0 " Column separation Classical 1-Dim. Transforms reasonable agree- Prediction of maximum
(RR 19) due to rapid value .Theory, neglect on ment. pressure due to cavity

closure or power . friction. ...... collapse is main con-
failure. _tribution of paper.

SH:65.0 Column separation Graphical Yes More of an expose of
(R 63) due to rapid value problem rather thsn so-

closure or power lution. Does not includ
Fai lure. a111 re Ferences to date.
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TECHNIQUE

BA:67.0 Cavitation 1 Dim. with friction Method of Favorable agreement Method of solution i
(R 42) characteristics computerized. Exp.

shows that a turbu-

lent, 2-phase flow

occurs ahead of the

main vapor cavity.

DR:73.0 1-Dim. with friction Method of Reasonable agree- Kerosene chosen for

characteristics mrent for first study. Primary con-
pressure peak. cern is with air re-

lease in a fluid ra-

ther than vapor forn
tion.

BA:73.0 " Values Empirical No Design for cavitatic

in butterfly valves.

MC:72.0 On-off servos See paper . Discusses Effects in
on-off controlled

Hydraulic servos.
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VI DISCUSSION

Based on the present literature search., certain current research trends

and future research needs are apparent. These are as follows:

Current Research'Trends

a. increased application of numerical techniques to the

solution of the system of differential equations

which govern the transient line flows.

b. inclusion of "higher order" effects (e.g. axial and

radial effects of the fluid and pipe) in the modelling

of the transient phenomena

c. solution of 2 and 3-dimensional transient flow pro-

blems

d. studies involving the effects of the boundary layer

and nonlinear terms on the transient response have

been initiated

Future Research

a. more emphasis on the mathematical modelling of com-

ponents utilized in hydraulic control systems

b. application of the finite element method to the

modelling and solution of transient line flows

c. further computer program development for the analy-

sis of the response of complicated systems to tran-

sient flows
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